2,905,419 research outputs found

    The Synthesis and Analysis of Stochastic Switching Circuits

    Get PDF
    Stochastic switching circuits are relay circuits that consist of stochastic switches called pswitches. The study of stochastic switching circuits has widespread applications in many fields of computer science, neuroscience, and biochemistry. In this paper, we discuss several properties of stochastic switching circuits, including robustness, expressibility, and probability approximation. First, we study the robustness, namely, the effect caused by introducing an error of size \epsilon to each pswitch in a stochastic circuit. We analyze two constructions and prove that simple series-parallel circuits are robust to small error perturbations, while general series-parallel circuits are not. Specifically, the total error introduced by perturbations of size less than \epsilon is bounded by a constant multiple of \epsilon in a simple series-parallel circuit, independent of the size of the circuit. Next, we study the expressibility of stochastic switching circuits: Given an integer q and a pswitch set S=\{\frac{1}{q},\frac{2}{q},...,\frac{q-1}{q}\}, can we synthesize any rational probability with denominator q^n (for arbitrary n) with a simple series-parallel stochastic switching circuit? We generalize previous results and prove that when q is a multiple of 2 or 3, the answer is yes. We also show that when q is a prime number larger than 3, the answer is no. Probability approximation is studied for a general case of an arbitrary pswitch set S=\{s_1,s_2,...,s_{|S|}\}. In this case, we propose an algorithm based on local optimization to approximate any desired probability. The analysis reveals that the approximation error of a switching circuit decreases exponentially with an increasing circuit size.Comment: 2 columns, 15 page

    On the canonical map of surfaces with q>=6

    Full text link
    We carry out an analysis of the canonical system of a minimal complex surface of general type with irregularity q>0. Using this analysis we are able to sharpen in the case q>0 the well known Castelnuovo inequality K^2>=3p_g+q-7. Then we turn to the study of surfaces with p_g=2q-3 and no fibration onto a curve of genus >1. We prove that for q>=6 the canonical map is birational. Combining this result with the analysis of the canonical system, we also prove the inequality: K^2>=7\chi+2. This improves an earlier result of the first and second author [M.Mendes Lopes and R.Pardini, On surfaces with p_g=2q-3, Adv. in Geom. 10 (3) (2010), 549-555].Comment: Dedicated to Fabrizio Catanese on the occasion of his 60th birthday. To appear in the special issue of Science of China Ser.A: Mathematics dedicated to him. V2:some typos have been correcte

    From quantum groups to genetic mutations

    Full text link
    In the framework of the crystal basis model of the genetic code, where each codon is assigned to an irreducible representation of Uq→0(sl(2)⊕sl(2))U_{q \to 0}(sl(2) \oplus sl(2)), single base mutation matrices are introduced. The strength of the mutation is assumed to depend on the "distance" between the codons. Preliminary general predictions of the model are compared with experimental data, with a satisfactory agreement.Comment: 11 pages, Talk at Int.Conf."Symmetries in Science XIII", Bregenz July 20-24 200

    Demonstration of a switchable damping system to allow low-noise operation of high-Q low-mass suspension systems

    Get PDF
    Low mass suspension systems with high-Q pendulum stages are used to enable quantum radiation pressure noise limited experiments. Utilising multiple pendulum stages with vertical blade springs and materials with high quality factors provides attenuation of seismic and thermal noise, however damping of these high-Q pendulum systems in multiple degrees of freedom is essential for practical implementation. Viscous damping such as eddy-current damping can be employed but introduces displacement noise from force noise due to thermal fluctuations in the damping system. In this paper we demonstrate a passive damping system with adjustable damping strength as a solution for this problem that can be used for low mass suspension systems without adding additional displacement noise in science mode. We show a reduction of the damping factor by a factor of 8 on a test suspension and provide a general optimisation for this system.Comment: 5 pages, 5 figure

    The warp drive: hyper-fast travel within general relativity

    Full text link
    It is shown how, within the framework of general relativity and without the introduction of wormholes, it is possible to modify a spacetime in a way that allows a spaceship to travel with an arbitrarily large speed. By a purely local expansion of spacetime behind the spaceship and an opposite contraction in front of it, motion faster than the speed of light as seen by observers outside the disturbed region is possible. The resulting distortion is reminiscent of the ``warp drive'' of science fiction. However, just as it happens with wormholes, exotic matter will be needed in order to generate a distortion of spacetime like the one discussed here.Comment: 10 pages, 1 figure. Not previously available in gr-q
    • …
    corecore